Lab on Graph Theoretical Analysis

CS – 590.21 Analysis and Modeling of Brain Networks

Department of Computer Science University of Crete

Brief Summary

- Graph: an ordered pair G = (V, E) comprising set V of vertices (or nodes) & a set E of edges (or links).
- **Degree of Connectivity**: the number of links a node has to other nodes.
- **Clustering Coefficient:** the extent to which the neighbors of a given node link to each other.
- Shortest Path Length: the fewest number of links(/steps) between two nodes.

Small-Worldness

High Average Clustering Coefficient <u>AND</u>

Small Average Shortest Path Length

Adapted from: https://doi.org/10.3389/fnins.2010.00200

Lattice and Random Graph Construction (in this assignment)

- 1. Full Randomization or Latticization
 - a. Lattice: Watts-Strogatz
 - **b.** Random:
 - i. Erdos-Renyi G(n,p) model
 - ii. Erdos-Renyi G(n,M) model

- 2. <u>Degree Distribution Preserving Randomization or</u> <u>Latticization</u>
 - a. Sporns Real-Based (both random and lattice)

Small-World Indices (for this assignment)

1. σ (sigma)

$$\sigma = \frac{C}{L} \times \frac{L_r}{C_r}$$

- Where C and L are the Clustering Coefficient (CC) and Average Shortest Path Length (ASPL or L) of the observed network, respectively, and *Cr* and *Lr* are the Clustering Coefficient and Average Shortest Path Length from the equivalent random graph.
- For $\sigma > 1$ the observed network qualifies as **small-world**.
- 2. ω (omega)

$$\omega = \frac{L_r}{L} - \frac{C}{C_l}$$

- Where L is the the ASPL of the observed network, Lr is the ASPL of the random network, C is the CC of the observed network and CI is the CC of the lattice.
- $-1 < \omega < 1$, with values around 0 ($\omega \approx 0$) considered **small-world**.

Variables - edges

10148x17 table

	1 NeuronA	2 NeuronB	3 STTC	4 CtrlGrpMean	5 CtrlGrpStDev	6 CtrlGrpMedian	7 Percentile	8 zScore		
1	1	10	0.0932535'	'0.000313198'	'0.0221142'	'-0.000210348'	1	'4.20274312		
2	1	17	0.103349'	'0.00024101'	'0.0227866'	'0.000827137'	1	'4.52493965		
3	1	34	0.0936288'	'-0.000602214'	'0.0218013'	'0.000277358'	1	'4.32226582		
4	1	68	0.0949678'	'0.00148126'	'0.0223358'	'0.00152172'	1	4.18550219		
5	1	207	0.135214'	'-0.000788736'	'0.0220065'	'-0.000960173'	1	6.18011660		
6	2	3	0.0970788'	'0.000715448'	'0.0212133'	'0.000273276'	1	4.54259129		
7	2	8	0.123532'	'0.000352203'	'0.0208391'	'1.98821e-05'	1	5.91099409		
8	2	16	0.109333'	'0.000285499'	'0.0222037'	'-0.00109478'	998	·4.91123105		
9	2	17	0.169904'	'-0.0015808'	'0.0213361'	'-0.00197385'	1	'8.03730766		
10	2	21	0.118788'	'0.000371422'	'0.0218273'	'-0.00152466'	1	'5.42515922		
11	2	22	0.0898491'	'0.000287487'	'0.0212201'	'-0.00024564'	1	'4.22060277		
12	2	26	0.0997537'	'-0.000150144'	'0.0210437'	'-0.00077601'	1	'4.74744669		
13	2	29	0.0839295'	'-0.00135977'	'0.0203219'	'-0.00248244'	1	'4.19691416		
14	2	34	0.192007'	'-0.000504009'	'0.0262263'	'-0.00123013'	998	'7.34038003		
15	2	39	0.121467	'-0.000296711'	'0.0218462'	'-0.00211532'	1	'5.57367922		
16	2	60	0.104538'	'0.00115485'	'0.0231726'	'-0.00138431'	996	4.46143937		
17	2	61	0.154889'	'0.00297409'	'0.022765'	'0.00276085'	1	'6.67317856		
18	2	62	0.11552'	'0.000437361'	'0.0215361'	'0.00107283'	1	'5.34370842		
19	2	69	0.0882548'	'-0.000788404'	'0.0204421'	'-0.00119314'	1	'4.35587361		
20	2	74	0.0943669'	'0.00088515'	'0.0223695'	'0.0013643'	998	4.17898254		
21	2	76	0.110878'	'0.00058802'	'0.0211628'	'0.00236625'	1	'5.21150225		
22	2	77	0.118562'	'-0.00122352'	'0.0222184'	'-0.00239881'	1	'5.39127569		
23	2	80	0.0935168'	0.000424138	'0.0209075'	'4.48356e-05'	1	'4.45259653		

V 🖌	🖉 Variables - conn_matrix 🕤 🕤 🖽 🗙																		
	conn_matrix 🗶																		
2	- 213x213 double																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	o	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	1		~
2	0	0	1	1	1	1	0	1	0	1	0	1	0	0	1	1	1		
3	0	1	0	1	1	0	1	1	0	0	1	1	1	1	0	1	1		
4	0	1	1	0	1	0	1	0	0	0	0	1	0	1	0	1	1		
5	0	1	1	1	0	0	1	0	0	0	1	0	1	1	0	1	1		
6	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		
7	0	0	1	1	1	0	0	1	0	0	1	1	0	1	0	1	1		
8	0	1	1	0	0	0	1	0	0	0	0	0	0	1	0	1	1		
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0		
10	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
11	0	0	1	0	1	0	1	0	0	0	0	1	1	1	1	1	C		
12	0	1	1	1	0	0	1	0	0	0	1	0	0	0	0	1	1		
13	0	0	1	0	1	0	0	0	0	0	1	0	0	0	0	0	0		
14	1	0	1	1	1	0	1	1	0	0	1	0	0	0	1	1	C		
15	0	1	0	0	0	0	0	0	1	0	1	0	0	1	0	1	1		
16	0	1	1	1	1	0	1	1	0	0	1	1	0	1	1	0	1		
17	1	1	1	1	1	1	1	1	0	0	0	1	0	0	1	1	0		
18	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	1	1		
19	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0		
20	0	1	1	1	1	0	1	1	0	0	0	0	0	0	0	1	C		
21	0	1	1	1	1	0	1	1	0	0	1	1	0	1	1	1	1		
22	0	1	1	1	1	0	1	0	0	0	1	0	0	1	1	1	1		
23	0	0	1	1	1	0	1	1	0	0	0	0	0	0	0	1	0		Y
	C																	>	
IIII.																			

🗋 Name 🔺		erdos_renyi_Gnp.m 🗶 lattice_WS.m 🗶 Main_SmallWorld.m 🗶 🕂	
getNodeCoordinates.m isSymmetric.m latmio_und.m	^	<pre>13 %Observed Graph. 14 - [conn_matrix,DoC_obs,CC_obs,L_obs,hubs_obs,hubs_number_obs]=observed_network(edges); 15</pre>	^
 Iattice_SRB.m Iattice_WS.m Main_SmallWorld.asv Main_SmallWorld.m numEdges.m observed_network.m plot_CC.m plot_DoC.m 	~	<pre>16 %% Lattice Generation. 17 18 %Creation of an equivalent lattice using Watts-Strogatz Algorithm. 19 - n=size(conn_matrix,2); %number of nodes of connected component in observed graph 20 - mean_DoC_obs=mean(DoC_obs); %average degree of connectivity 21 22 - [DoC_latt_WS,CC_latt_WS,L_latt_WS,hubs_latt_WS,hubs_number_latt_WS]=lattice_WS(rean_DoC_obs,n); 23 - [DoC_latt_WS,CC_latt_WS,L_latt_WS,hubs_latt_WS,hubs_number_latt_WS]=lattice_WS(rean_DoC_obs,n); </pre>	
lattice_WS.m (Function) Workspace	^ ()	<pre>24 %Creation of lattice using Sporns Real-Based Algorithm. 25 - [DoC_latt_SRB,CC_latt_SRB,L_latt_SRB,hubs_latt_SRB,hubs_number_latt_SRB]=lattice_SRB(conn_matrix); 26</pre>	
Name ▲ Value CC_gnm 213x213 double CC_gnp 213x213 double CC_latt_SRB 213x1 double CC_latt_WS 213x1 double CC_obs 213x1 double CC_rand_gnm 213x1 double CC_rand_SRB 213x1 double CC_rand_SRB 213x1 double CC_rand_SRB 213x1 double CC_rand_SRB 213x1 double	^	<pre>27 %% Random Generation. 28 - num_edges= numEdges(conn_matrix); %number of edges in observed network 29 - p=num_edges/(n*(n-1)/2); %number of real edges/number of potential edges 30 31 %Creation of a corresponding random network using Erdos-Renyi G(n,p) model. 32 - [DoC_rand_gnp,CC_rand_gnp,L_rand_gnp,hubs_rand_gnp,hubs_number_rand_gnp]=erdos_renyi_Gnp(n,p); 33 34 %Creation of a corresponding random network using Erdos-Renyi G(n,m) model. 35 - [DoC_rand_gnm,CC_rand_gnm,L_rand_gnm,hubs_rand_gnm,hubs_number_rand_gnm]=erdos_renyi_Gnm(n,num_edges);</pre>	~
DoC_latt_SRB 213x1 double DoC_latt_WS 213x1 double DoC_obs 213x1 double DoC_rand_gnm 213x1 double DoC_rand_gnp 213x1 double	v	Command Window fz >>	6

er	rdos_renyi_Gnp.m 💥 lattice_WS.m 🛪 Main_SmallWorld.m 🛪 observed_network.m 🛪 🕂							
1	&Produce a random graph according to Erdos-Renyi G(n,p) model, ie given the							
2	%number of nodes and a probability of connecting two nodes, and calculate its DoC, CC, L and hubs.							
3	%Input:							
4	%n: number of nodes of observed graph							
5	%p: probability of connecting two nodes, calculated as the fraction of the number of edges							
6	%of observed graph over the number of its total potential edges							
7	%Output:							
8	%DoC_rand_gnp: Degree of Connectivity of generated graph							
9	%CC rand gnp: Clustering coefficient of generated graph							
10	<pre>%L_rand_gnp: Average Shortest Path Length of generated graph</pre>							
11	%hubs_rand_gnp: DoC of hubs of generated graph							
12	<pre>%hubs_number_rand_gnp: Number of hubs of generated graph</pre>							
13								
14	<pre>function [DoC_rand_gnp,CC_rand_gnp,L_rand_gnp,hubs_rand_gnp,hubs_number_rand_gnp]=erdos_renyi_Gnp(n,p)</pre>							
15								
16								
17 -	<pre>seed=0; %you can choose another number randomly for a different random graph</pre>							
18 -	<pre>[G,n,m] = ErdosRenyi_GnP(n,p,seed,1);</pre>							
19 -	G=full(G);							
20								
21	%% Graph-Theoretical Analysis.							
22	%Find number of Connected Components.							
23 -	<pre>comp_rand=connected_components_vl(G,size(G,1));</pre>							

Assignment

Dataset: FS13 mouse

- OGB data
- Spontaneous Activity
- dt=0.3sec
- z-score threshold=4
- Undirected graph

Deadline: 05/11/2019